

Future Design and Social Cohesion: Evidence from Nepal

Name: Raja Rajendra Timilsina (Ph.D.)

ラジャ ラジンドラ ティミルシ

Place of birth and origin: Nepal ネパール

Affiliation: Kochi University of Technology

Research Institute for Future Design

高知工科大学、フューチャー・デザイン研究所

Revolutions in human history:

The revolutions that happened during human history

- 1. The cognitive: 70,000 years ago
- 2. The agricultural: 12,000 years ago
- 3. The Scientific: 500 years

Humans cooperation threshold is 150 (Hill and Dunbar, 2003)

Cognitive revolution

AMARA

education.com Capanger + 2011-2012 by Education.com

More worksheets at www.education.com/worksheets

Industrial revolution

The evolution in humans history:

Homo Erectus: Up right man

Homo Habilis: Handy man

Homo sapiens: Wise man

Now ??? Homo → Prospectus,
Gilbert(2006)

We live mostly by thinking about future

- *One study that survey of 2,250 adults, found "mind-wandering" occurred remarkably 46.9% of times points sampled (Killingsworth and Gilbert, 2010)b)
- A human can predict the hedonic consequences of the event that he/she never experienced.
- *Mind-wandering theory purposes it serves for the planning and simulate plausible outcomes to an alternative future.

Culture, prospection and cooperation

- □Culture is understood as learned behavior that is shared socially.
- Animals also have culture, as they copy and mimic each other's behavior, and they can transmit to others in a group.
- Collective planning only becomes possible when group members can share a vision about the future through espection.

What makes us care about future generations?

- Can we cooperate with future generations to maintain intergeneration suitability?
- ➤ Why do we have so many intergenerational problems?

Intergeneration sustainability

- a) Sustainability is a minimum condition to be satisfied, that is, maintaining the same welfare of successive generation, as compared with the current generation. (Dasgupta, S. and Mitra, T., 1983)
- b) ISD, "Intergenerational sustainability dilemma," is defined as a situation where the current generation chooses action to her benefit without considering future generations, compromising intergenerational sustainability (*Kamijo et el.*,2017, *Shahrier et al.*, 2017)

3 Person: Intergenerational Sustainability Dilemma game (ISDG)

ABゲームの流れ

第1グループ

第2グループ

第3グループ

••••

•••••

注意点

「オプションAを選ぶと後に続くグループの追加ポイントは一様に300減少」

〇第2グループが第3グループに与える影響 (第1グループがAを選択した場合)

「オプションAを選ぶと後のグループ の追加ポイントが一様に300減少」と いうルールは第1グループから第2グ ループ、第2グループから第3グルー プ、第3グループから第4グルー ---など、次に続くすべてのグ 一プに適用されます。

Map of Nepal

Difference between Urban and Rural areas

Table 2: The frequency and percentage of generation choices of A and B (percentage in parenthesis)

Generation choices between \boldsymbol{A} and \boldsymbol{B}	Area		Total
	Urban	Rural	Total
A	21 (35.59%)	10 (16.13%)	31 (25.62 %)
B	38 (64.41 %)	52 (83.87%)	90 (74.38 %)
Total	59 (100.00 %)	62 (100.00 %)	121 (100.00 %)

Can we be accountable to future services generation?

Table 1: Frequencies and percentages of generation choices between options A and B in the base line ISDG, IFG and IA

	A	В	Overall
Baseline ISDG	21 (35.59 %)	38 (64.41 %)	59 (100 %)
IFG	14 (29.78 %)	33 (70.22 %)	47 (100%)
IA	7 (14.58 %)	41 (85.42%)	48 (100 %)

Some practices

- ☐ Solid waste management in Kathmandu: "Future design" as a framework for policymaking tools to manage household waste in Kathmandu city.
- ☐ Workshop as an attempt to use "Future design" for visioning and practicing for tackling household waste in Pokhara municipality, Nepal

Future work of "Future design"

a) Modeling education in developing countries to promote future thinking for sustainability

Thank you

Take away:

•We can still design a better future for the next generations, those who are yet to come into this world.

Co-operation is humans virtue; all we need is furthermore practice.

References:

- a) Daniel T. Gilbert, & Timothy D. Wilson. (2007). *Prospection: Experiencing the Futurer*. Science, 317: 1351-1354
- b) **Dasgupta, S. and Mitra, T.** (1983). Intergenerational equity and efficient allocation of exhaustible resources. International economic review, 24:133–153.
- c) Hill, R. A. & Dunbar, R. I. M. (2003). Social network size in humans, Human Nature, 14: 53-72
- Kamijo, Y., Komiya, A., Mifune, N., and Saijo, T. (2017). Negotiating with the future: Incorporating imaginary future generations into negotiations. Sustainability science, 12:409–420.
 - hahrier, S., Kotani, K., and Saijo, T. (2017). Intergenerational sustainability delemma and the degree of capitalism in the society. Sustainability science, 12:957–967.

