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Abstract 

This paper applies machine learning methods, namely, the decision tree algorithm and ensemble 

learning methods to forecast Japanese lower house elections. By applying these two machine learning 

methods, we developed several non-linear forecasting models. We then compared our forecasting 

results with those generated by Lewis-Beck and Tien (2012), a pioneering model on this topic, using 

the same data and the same explanatory variables. We found that, even without tuning, all of our 

ensemble-learning-based forecasting models exceeded Lewis-Beck and Tien’s model in mean 

accuracy. All of them also provided better explanations for mean variance. Despite small sample size 

inherent for country-specific forecasting models, our non-linear forecasting models of Japanese 

election generated better performance than linear models. We believe, by combining with substantive 

theories of each country’s political situation, our methodological approach can improve predictability 

of country-specific forecasting models of other countries. 
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I. Introduction 

Various types of election forecasting have been carried out in democracies around the world. Lewis-

Beck and Tien (2011) divided them to three leading approaches: polls, election forecasting markets 

(e.g., Arrow et al. 2008), and modeling. In this paper, we take up the third, the modeling approach for 

electoral forecasting of Japanese elections. Lewis-Beck and Tien (LBT) (2012) claimed that, before 

their pioneering attempt, no one had constructed forecasting models for Japan.1  Even after their 

attempt, very few have followed up with additional endeavors (for an exception, see Nasuno 2015).  

The modeling approach combines substantive theory and methodological theory. Standard 

theories of electoral behavior are usually used for the former; regression theory is usually used for the 

latter, including the work of LBT on Japanese elections. In this paper, we focus on the latter, 

methodological theory. Instead of the regression theory used in LBT, we introduce a new 

methodological approach, namely, the decision tree algorithm and ensemble learning methods, 

developed in the field of machine learning. We use the same Japanese data and variables as LBT to 

comparatively show our model’s improved performance over their pioneering work. We further argue 

that our new methodological approach can, by combining substantive theory that fits each country’s 

political environment and institutions, improve the predictivity of electoral forecasting models of not 

only Japan but other countries.  

One of the reasons for the underdevelopment of Japanese electoral forecasting models is a 

serious small-sample problem, which is inherent in electoral forecasting of any single country. Only 

26 lower house elections have been held in Japan following the country’s full democratization after 

the end of World War II. Such sample-size constraints hang especially heavily on constructing 

sophisticated, non-linear forecasting models. LBT thus used a very simple linear model to forecast the 

percentage of seats to be won in lower house election by the Liberal Democratic Party (LDP), the 

party that dominated Japan’s postwar political landscape.2 The larger sample sizes of cross-national 

electoral forecasting models, on the other hand, have recently enabled the development of non-linear 

forecasting models utilizing machine learning techniques (e.g., Kennedy et al. 2017). However, as the 

no-free-lunch-theorem (Wolpert & Macready 1995) implies, incorporating country-specific 

institutional and behavioral aspects of elections might substantially enhance the models’ accuracy. 

 
1 There are a few possible exceptions to the Lewis-Beck and Tien’s claim, including Inoguchi 
(1981).  
2 Since 1955 when the LDP was established, it has been the ruling party of Japan until the present 
except for about 5 years.  
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Cross-national forecasting models obviously face difficulties in accounting for such country-specific 

factors.  

We developed non-linear forecasting models for Japanese elections by combining machine 

learning techniques, namely, the decision tree method and ensemble learning method. The decision 

tree method, unlike other non-linear learning algorithms such as neural networks, specifies its 

decision-making logic. It thus is compatible with modeling-type electoral forecasting where the model 

substantively specifies the causal relations between variables. The decision tree method, however, is 

prone to overfitting problems. It works well with training data but not with new data. To overcome the 

overfitting problem, we ensembled decision trees and created an ensemble model of decision trees to 

forecast election results. By combining these methods, we attempted to develop non-linear forecasting 

models that specify causal relations between variables and can more accurately make predictions. 

Since our goal is to show how our methods improved the performance of forecasting models 

methodologically, we fixed the substantive part of our forecasting model by using the same variable 

and the same dataset as LBT’s pioneering work on Japanese electoral forecasting.  

Overall, our non-linear machine-learning approach to Japanese electoral forecasting showed 

promising results. We first divided the dataset into a training dataset and testing dataset; using the 

former to train model and adjust its hyper-parameters by cross validation; and then evaluating 

generalization performance using the latter. As for indicators to evaluate the models, we used 

maximum absolute error and explained variance. All our five models obtained better scores for the 

two indicators compared to LBT’s model. Among them, the models using random forest and Gradient 

boosting performed the well; they reduced maximum absolute error by 0.50 to 0.76 points and 

increased explained variance by 0.10 to 0.12 points. Since we assumed the same substantive relations 

between variables and electoral results as LBT, we argue that the enhanced predictability of our model 

can be explained by the difference between our methodological approach using non-linear ensemble 

learning methods and LBT’s methodological approach using linear regression models.   

We believe the advantage of our approach is not confined to a Japanese forecasting model; 

it can be applied to other country-specific forecasting models and can substantially enhance their 

predictability. One of the aims of LBT’s paper was to show the theoretical compatibility of their model 

across borders. If the substantive part of their model is theoretically compatible, our model which only 

changed the methodological part of theirs’ should also be compatible. Our approach also allows 

researchers to incorporate country-specific institutional and behavioral aspects into non-linear 
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forecasting models. Inclusion of such aspects should further increase predictability of country-specific 

forecasting models regardless of country.  

 

II. Data and Methods 

1. Data 

To rigidly compare our model with LBT’s (2012) forecasting model, we used the same dataset with 

theirs: Japanese lower house election results for the Liberal Democratic Party (LDP) from November 

1955, when the LDP was established. Since several lower house elections were held since LBT’s 

paper,3 we have added them to evaluate both our model and LBT’s model.  

The outcome (dependent variable) is the LDP’s seat occupancy rate (LDP seats). It is defined 

as the number of seats the LDP won in the lower house election divided by the total number of seats 

in the lower house. As for elections after the comprehensive electoral reform of 1993, the number of 

seats includes the number of seats the LDP won in single-member districts as well as proportional 

representation constituencies.  

We also used the three explanatory variables of LBT’s model. The first is real GDP growth 

rate (calendar year, GDP). As LBT pointed out, in addition to theoretical claims, several electoral 

studies empirically found significant relationships between pre-election key economic indicators such 

as GDP growth rate and the percentage of votes the incumbent party earned in the election (e.g., Fair 

1978; Inoguchi 1981; Lewis-Beck & Rice 1984; Hirano 2007, 2012). Replicating LBT’s model, we 

added real GDP growth rate a year before the election year. The second is the cabinet approval rate 

(PM approval). The positive relation between the approval rate and electoral results is theoretically 

straightforward and empirically reported in several studies (e.g., Sigelman 1979; Lewis-Beck and Rice 

1984). We again copied LBT’s model and included the cabinet approval rate surveyed by Jiji Press 

one month before the election. The third is the number of days between two consecutive elections 

(Days). Japanese prime minister who concurrently holds the leadership position of the incumbent party 

(i.e., LDP for this paper), can strategically call an early election before his term expires in the lower 

house (Kato and Inui 2013). An earlier election implies the situation is advantageous for the prime 

minister and the incumbent party because if the situation was not favorable, the prime minister could 

have waited until the situation gets better.  

Although there were 21 lower house elections between 1958 and 2017, we excluded the 

 
3 We added all the lower house elections since then through the most recent one, held in 2017.  
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1958 and 2012 elections from our study. As for the 1958 election, it was the first one since the founding 

of the LDP, so we could not measure the explanatory variable “days between two consecutive elections 

(Days).” As for the 2012 election, it was the only one called by a non-LDP party, so we could not 

measure the dependent variable “LDP’s seat occupancy rate.” Table 1 shows the descriptive statistics 

of each variable used in this paper.  

 

Table 1:Descriptive Statistics of Variables 

 
 

2. Methods 

In this paper, we develop non-linear forecasting models to more accurately predict electoral results in 

Japan. Since the modeling approach to electoral forecasting combines substantive and methodological 

theories, it requires the causal interpretability of prediction results. Among the various machine 

learning techniques, we therefore decided to use decision tree algorithms that specify causal relations 

between variables. Furthermore, to avoid the overfitting problem often caused by the decision tree 

algorithms, we applied ensemble learning methods to ensemble decision trees, using the algorithms 

cheat sheet of python (Version 3.6) package scikit-learn.4 In section 2.1 we describe the methods we 

use to create forecasting models in this paper. The next section 2.2. describes methods we used to 

evaluate the performance of each model.  

 

2.1 Decision tree and ensemble methods 

A decision tree is a non-parametric and non-linear supervised learning method. This algorithm is easy 

to intuitively grasp because it creates models that predict target value or class by a simple logical 

sequence. It works for both discrete and continuous target variables. Unlike other non-linear learning 

 
4 See https://scikit-learn.org/stable/tutorial/machine learning map/ for details regarding the python 
cheat sheet.  

LDP_seats GDP PM_approval Days
count 19 19 19 19
mean 52.99 4.27 36.12 1078.89

sd 8.77 3.63 9.34 283.98
min 24.80 -1.09 16.30 259.00
25% 48.60 1.52 29.30 983.50
50% 55.20 3.38 37.90 1096.00
75% 59.85 5.91 41.70 1260.00
max 63.40 11.91 54.80 1456.00
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algorithms such as neural networks, a decision tree explicitly specifies its decision-making logic. Some 

scholars insist that this explainable attribute makes it the most preferable among machine learning 

algorithms (Seni and Elder 2010). However, models created by decision trees are likely to overfit. 

They work well for training data but not for testing or for new data. To overcome the overfitting 

problem, ensemble decision trees are known to be effective. We thus created ensemble models of 

decision trees to forecast election results. 

Ensemble learning methods construct multiple prediction models for a single regression or 

classification problem and, through the modeling process, weak learners such as linear regressions and 

decision trees are ensembled into a strong learner (Zhou 2012, Freund and Schapire 1997). The 

methods have improved performance for a variety of machine learning tasks (Caruana and Niculescu-

Mizil 2006).  

Ensemble methods are broadly sorted into two categories; sequential techniques and parallel 

techniques. Sequential techniques train learners sequentially by correcting errors of the learners. 

AdaBoost (Freund and Schapire 1997) and gradient boosting (Friedman 2001) are typical techniques 

of this category. The AdaBoost (Adaptive boosting) algorithm generally uses a single split decision 

tree called a decision stump as a weak learner and assigns weights to observations that are difficult to 

predict by the weak learner. In each step of the sequential model building process, AdaBoost creates a 

new sample distribution by providing greater weights to misclassified observations and lesser weights 

to correctly classified observations. A targeted weak learner is trained on updated sample distributions 

and, at the end of sequential process, all the models are ensembled into a strong model. The strong 

model makes predictions by averaging the weights of each model that was ensembled.  

Gradient boosting also generates ensemble models through a sequential process. First, it 

builds a model on a training dataset, and then it measures the residual loss of this model by calculating 

difference between original and predicted values. In the next step, another model is trained using a 

weak learner based on the residual loss of the previous step. This sequential model building continues 

until the residual loss reaches zero or a certain threshold. These newly added weak models are built 

on the observations where the previous models together are not performing well. In contrast to 

AdaBoost, gradient boosting does not create new sample distributions for training a weak learner in 

each step of the sequential process. eXtreme Gradient Boosting (XGBoost, Chen et al 2015), which 

has recently been frequently used in the field of machine learning, is also a sequential type method. 

XGBoost is an efficient implementation of a gradient boosting decision tree. XGBoost improves the 
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original gradient boosting using performance improvement measures, a novel tree building strategy, 

and an optimal treatment of missing values.  

The parallel technique of ensemble methods, on the other hand, trains weak learners 

independently and integrate them to create a single ensemble model. Bagging (Breiman 1996) and 

random forest (Breiman 2001) are typical methods of this class. For example, bagging (Bootstrap 

Aggregating) builds multiple decision tree models using multiple bootstrap samples collected from an 

original single sample. Multiple decision models are then aggregated to create an ensemble model. 

The output of this ensemble model is calculated by averaging the results of all the multiple decision 

trees.  

Random forest uses a bootstrapping resampling method and randomly selects a certain 

number of explanatory variables to generate multiple decision trees. The trees are combined to create 

the final model. It is known that if each decision tree is independent, the model will dramatically 

reduce the variance of output (Zhou et al 2015). In the following section, we use the AdaBoost, 

gradient boosting, bagging, random forest and XGBoost ensemble methods to forecast Japanese 

elections. 

 

2.2 Performance evaluation methods 

Here, we describe how we evaluate the models we created by the methods described in the previous 

section (section 2.1) and evaluate their performance. We first shuffled the dataset and used 75% of 

them to train the models. In modeling, we used LOO (leave-one-out) cross-validation. LOO cross-

validation is an effective validation method of K-division cross-validation and is suitable for 

verification of models with a small number of data. We performed LOO on the training data, and 

hyper-parameters were adjusted by grid search. For the validation metrics, considering possible 

excessive effects of outliers due to small sample size, we used average absolute error.  

We used the remaining 25% of the dataset as testing data and evaluated generalization 

performance. Since either training or testing data may be biased depending on the size of data, we 

shuffled 10 times and calculated the average value. To make a proper comparison with the original 

LBT model, we went through the same modelling process with the linear model.  

  

III. Performance Results  

In this section, we first describe how we tuned hyperparameters when modeling the training data 
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(section 3.1). We then show and compare, using the training data, performance of our models with the 

original linear model (section 3.2). Finally, we test our models using the testing data to examine 

generalization performance and compare it with the original linear model (section 3.3).  

 

3.1 Tuning hyper-parameters 

We adjusted the following four types of hyperparameters for our modeling: 

・ Regularization: to prevent overfit-learning, we adjusted the depth of decision trees, number of 

leaves, and splits. 

・ Number of weak learners: adjusted the number of weak learners used in combination. 

・ Optimization parameters for sequential models: adjusted learning rate, eta, and others to tune the 

complexity of the model. 

・ Evaluation: the evaluation metrics are unified to the mean absolute error (MAE), as mentioned in 

Section 2.2. 

 

3.2 Performance results using training data 

We constructed five types of models using different ensemble methods namely, AdaBoost, bagging, 

gradient boosting, random forest and XGBoost, Table 2 shows the performance results of the ensemble 

methods using training data. It also shows the performance results of a linear model used in LBT’s 

paper. In Table 2, the cross validation mean is the average of 10 shuffles of LOO cross validation. The 

smaller the cross validation mean, the better the performance of the model. The other scores are 

obtained by training with the training data and also measuring performance with the training data. If a 

certain model’s MAE is closer to ‘0’ and Explained Variance Score (EX) is closer to ‘1,’ the model is 

performing better. The former (MAE) shows how accurate the model can predict the actual value and 

the latter (EX) shows how certain the predictions are.  

 

Table 2: Performance Results of Models Using the Training Data 

 

Linear Bagging Random
Forest Adaboost Gradient

boosting
XGBoost
(DART)

Cross Validation mean 5.40 3.98 4.10 3.08 3.61 4.66
MAE mean 3.61 2.36 2.05 0.51 0.33 0.15
EX mean 0.67 0.83 0.86 0.97 0.97 1.00
MAE max 4.22 3.59 3.61 1.60 1.48 0.72

EX min 0.53 0.66 0.56 0.91 0.75 0.99
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      Table 2 displays performance results of non-linear models using ensemble methods and the 

linear model used in LBT. In all categories of performance evaluation, non-linear models 

outperformed the linear model. Among the non-liner models using ensemble learning, the sequential 

type AdaBoost and gradient boosting showed superior performance. We believe the strong tendency 

of sequential construction methods to excessively adapt to the learning data resulted in better 

performance.  

 

3.3 Generalization performance 

To test generalization performance, we used the testing data to test our five models and the linear 

model of LBT. Table 3 shows the performance results. Non-linear models showed improved 

performance over the linear model in most of the categories. Among the five models, random forest 

for the parallel type ensemble method and gradient boosting for sequential type ensemble method in 

particular, showed superior results than the linear regression model. The MAE mean improved by 0.5 

and 0.7, and the EX mean improved about 0.1. However, as for MAE max, all the non-linear models’ 

performance worsened compare to the linear regression model. 

 
Table 3: Performance Results of Generalization Performance 

 
   

IV. Discussion: Importance of Explanatory Variables 

To further investigate how our non-linear models are structually functioning, in this section, by 

using the random forest model for an example, we examined how important the three explanatory 

variables 0f the model are in predicting the forecasting results. Explanatory variables with high 

importance are drivers of the forecasting and their values have significant influence on the 

forcasting results. In contrast, explanatory variables with lower importance could be discarded 

from modeling.  

There are two measures of variable importance in random forest. One is permutation 

importance and the other is Gini importance. In permutation importance method, at the time of 

Linear Bagging Random
Forest Adaboost Gradient

boosting
XGBoost
(DART)

MAE mean 6.08 5.76 5.58 6.05 5.32 5.85
EX mean 0.28 0.38 0.38 0.28 0.40 0.31

MAE max 9.09 10.60 9.68 10.74 9.94 10.51
EX min -2.69 -0.73 -0.44 -0.44 -0.08 -0.06
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shuffles, variable importance is calculated by how much accuracy decreases when each variable is 

excluded.5 In Gini importance method, Gini-impurity/Variance is used to decide which variable 

to split at each node in tree creation process. For each variable, the sum of the Gini-

impurity/Variance decrease over all the trees of the random forest is calculated. The average score 

of it, the sum of Gini-impurity decrease divided by the number of trees, is variable importance 

value (Louppe et al 2013). We used Gini importance score in this analysis which is the default 

method for python package scikit-learn .The descriptive statistics of variable importance are 

displayed in Table 4 and Figure 1. Consistent with LBT’s linear model, all three variables had 

significant effect in forecasting results. Compared to the linear model, however, “Days (number 

of days after the previous election)” had more substantial effect than the linear model and “GDP” 

had less effects.6  

 

Table 4: Descriptive Statistics of Explanatory Variable Importance 

            

 

Figure 1: Descriptive Statistics of Explanatory Variable Importance 

 

 
5 This is a standard procedure often used in the field of machine learning. By going through this 
process, one can examine which variables are drivers of outcome and which are not.  
6 Since variable importance examines relative importance among explanatory variables, it takes 
values between 0 to 1 and the sign is always positive. “Days,” however, affects the outcome 
negatively in this case.  

Feature importance GDP PM
approval Days

mean 0.230 0.227 0.543
sd 0.059 0.095 0.125

min 0.153 0.036 0.394
max 0.318 0.395 0.811
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Overall, the random forest model, one of our five models, seems to be structured 

properly and functioning well. There remains rooms for improvement, however. For example, as 

for the importance of explanatory variables, why did the results differ from LBT? Since this paper 

focuses on the methodological aspects of the Japanese electoral forecasting model, we will leave these 

substantive questions to be addressed in the future.  

 

V. Conclusion 

In this paper, we created non-linear forecasting models of Japanese elections using decision trees and 

ensemble learning methods. To assess methodological advantage over LBT’s pioneering model of 

Japanese electoral forecasting, we replicated substantive theory and data of LBT’s linear model. All 

of our non-linear models showed improved performance over LBT’s linear model in almost all the 

evaluation categories. Despite small sample size inherent for country-specific forecasting models, we 

were able to develop non-linear forecasting models of Japanese election that generate better 

performance than the linear model.  

Our study can be extended to several directions. First, by improving substantive theory of 

our electoral forecasting models, we can further improve the performance of the models. To do so, we 

need to examine both institutional and behavioral aspects of Japanese politics. Second, our 

methodological approach can be applied to, by combining with substantive theory of each country, 

other country-specific forecasting models. In fact, one of the aims of LBT was to show theoretical 

compatibility of their model across borders. Third, to overcome small sample size, we can utilize state 

of art data augmentation methods such as Generative Adversarial Networks (GANs) (Ahsan et al. 

2019) to increase sample size of country-specific forecasting models.  
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