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Issues

• What is the impact of the “lockdown” policies and
people’s movement on job losses and the spread of
COVID-19 in Japan?

• The role of teleworkablity?

• What is a trade-off between job losses and the spread
of COVID-19?

2



Case Growth and Mobility
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Prefecture Government Policies in Japan
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YOY difference in unemployed, non-labor force, leave
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YOY difference in involuntary job separations
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YOY difference in employment: regular vs. non-regular

YOY Diff in Employment: Regular vs. Non-Regular
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What is the impact of the “lockdown”
policies and people’s movement on job

losses?
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Did policies and voluntary restraint lead to job losses?

ln
(Yi,j,2020

Yi,j,2019

)
= β1Zi,j + β2Zi,j × Teli + γTeli + X ′i α + εij

for prefecture i on month j = 2,3...,7.

• Yi,j : The number of job losses due to employer

• Zi,j : Policy index or Mobility index

• Teli : Teleworkability index

• Xi : the log of GDP per capita, poverty rate, elderly rate,
and population density
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Prefecture-level Monthly Panel Data

• Monthly panel data from Feb to July of 2020.

• “Involuntary job separations due to employer” from Monthly
Report on Employment Insurance Programs, MHLW
(Koyou-Hoken-Jigyou-Geppou)

• Policy Index = Average of 7 policy dummy variables

• Mobility Index = (Workplaces+Retail+Grocery+Transit)/4

10



Policy Index and Google Mobility Index
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Involuntary Job Separations

Involuntary Job Separations
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Teleworkability

Four different teleworkabilty indexes:

1. Indexes based on occupational task descriptions

• Dingel-Neiman’s measure mapped into Japanese
occupational classifications.

• DN’s measure based on JONET.

2. Indexes based on actual telework hours data

• Persol (April 12-13 2020, regular workers only).

• Line (April 10-12 2020, office workers only).
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Persol Teleworkability
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Did policies and voluntary restraint lead to job loss?

Dependent variable: Involuntary Job Separations

(1) (2) (3) (4)

Mobilityi,j −0.775∗ −2.719∗∗

(0.460) (1.079)
Policyi,j 0.174 0.579∗∗

(0.120) (0.292)
Persoli −0.556∗∗ −0.233 −0.504∗∗ −0.375

(0.277) (0.257) (0.257) (0.247)
Mobilityi,j × Persoli 3.143∗∗∗

(1.205)
Policyi,j × Persoli −0.842∗

(0.469)

Observations 282 282 282 282
R2 0.485 0.497 0.485 0.494

Note: Weighted by Population; Includes prefecture controls and month dummies.
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Different teleworkability measures

Dependent variable: Involuntary Job Separations
Line DN DN-JONET Line DN DN-JONET

(1) (2) (3) (4) (5) (6)

Mobilityi,j −2.743∗∗ −7.192∗∗∗ −3.972∗

(1.098) (2.493) (2.069)
Policyi,j 0.507∗ 1.606∗∗ 0.898∗

(0.278) (0.675) (0.535)
Teli −0.283 −0.751 −0.024 −0.381∗ −1.679 −0.284

(0.234) (1.395) (1.049) (0.225) (1.234) (0.972)
Mobilityi,j × Teli 2.761∗∗ 21.260∗∗∗ 8.468∗∗

(1.109) (7.373) (4.226)
Policyi,j × Teli −0.676 −5.271∗∗ −2.190∗

(0.417) (2.273) (1.278)

Observations 282 282 282 282 282 282
R2 0.501 0.499 0.479 0.496 0.493 0.478

Note: Weighted by Population; Includes prefecture controls and month dummies.
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IV regression — use Policy as an IV for Mobility

Dependent variable: Involuntary Job Separations
Persol Line DN DN-JONET

(1) (2) (3) (4)

Mobilityi,j −7.384∗∗ −6.568∗ −10.896∗∗ −8.723
(3.730) (3.621) (4.351) (5.651)

Mobilityi,j × Teli 7.182∗∗ 5.724∗ 31.196∗∗∗ 16.356∗

(3.446) (3.004) (11.662) (9.714)
Teli −0.163 −0.262 −0.196 −0.188

(0.260) (0.217) (1.250) (1.006)

Observations 282 282 282 282
R2 0.451 0.468 0.493 0.462

Weighted by Population; Includes prefecture controls and month dummies.
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Summary of Involuntary Job Loss Regression

• “Lockdown” Policies, Mobility ↓
⇒ Involuntary Job Separations ↑.

• Higher teleworkability weakens these relationships.

(e.g., Tokyo suffers less from the state of emergency than
other prefectures).
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What is the impact of the “lockdown”
policies and people’s movement on the

spread of COVID-19?
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Causal Diagram: Chernozhukov, Kasahara, and Schrimpf
(2020)

Pi,t−14

Infoi,t−14 ∆ log Cit

Mi,t−14

Infoi,t−14

Xit

• ∆ log Cit : the growth rate of cases

• Pi,t−14: the lagged policies (e.g., state of emergency)

• Mi,t−14: the lagged behavior variables (Google mobility)

• Infoi,t−14: past cases

• Xit : confounders (prefecture characteristics, month dummies) 20



Dynamic feedback
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Case Growth Regression Analysis

∆ log Cit = αMi,t−14 + µ′Infoi,t−14 + δ′Y Xit + εy
it

Mi,t−14 = βPi,t−14 + γ′Infoi,t−14 + δ′BXit + εb
it

• ∆log∆Cit : the growth rate of cases

• Mi,t−14: Mobility Index lagged by 14 days

• Pi,t−14: Policy Index lagged by 14 days

• Infoi,t−14: the log of lagged cases, lagged case growth

• Xit : prefecture-level characteristics and month dummies.
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Daily Panel Data for COVID-19

• Data Period: from March 29 to August 31.

• Daily cases: https://gis.jag-japan.com/covid19jp/

• The number of tests: Toyo Keizai

• Policy Index = Average of 7 policy variables

• Mobility Index = (Workplaces+Retail+Grocery+Transit)/4

We use 7 days moving averages of all variables
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Case Growth and Mobility
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Case growth and mobility
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The Effect of Mobility and Information on Cases

Dependent variable.: ∆log∆Cit

Mobility 1.213∗∗

(0.478)
∆log∆Ci,t−14 0.131∗∗∗

(0.043)
log∆Ci,t−14 -0.244∗∗∗

(0.047)

Observations 2,270
R2 0.426

Note: Weighted by Population; prefecture controls, monthly dummies, Golden week
dummy, and the log of test included.
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The Effect of Policy on Mobility

Dependent variable: Mobilityit

(1) (2)

Policyit −0.144∗∗∗ −0.085∗∗∗

(0.007) (0.012)
Teleworkability −0.272∗

(0.141)
Policyit × Teleworkabilityi −0.194∗∗∗

(0.031)
∆log∆Cit 0.013∗∗∗ 0.012∗∗∗

(0.002) (0.002)
log∆Cit −0.011∗∗∗ −0.008∗∗∗

(0.001) (0.001)

Observations 2,480 2,480
R2 0.927 0.931

Note: Weighted by Population; prefecture controls, monthly dummies, and Golden
week dummy included.
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Fit and Prediction of Weekly Case Growth in Tokyo
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Trade-off between job losses and the
spread of COVID-19?
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People’s movement as an input for production function

The production function:

Yt = min{Lt , ϕ(Mt )},

⇒ Yt = Lt = ϕ(Mt ),

where

• Lt : employment

• Mt : people’s movement

• ϕ′(Mt ) captures teleworkability.
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Social planner’s problem with SIRD model

v0 = max
{Lt}

∞∑
t=0

δt (1− Dt )u(yt )

s.t. yt :=
Lt

1− Dt
, Mt = ϕ−1(Lt ),

St+1 = St − βt (Mt )St It (Susceptible)

It+1 = (1− γ)It + βt (Mt )St It (Infectious)

Rt+1 = Rt + πr It+1 (Recoverd)

Dt+1 = Dt + πd It+1 (Dead)

Trade-off between jobs and deaths

Lt ↑ ⇒ Mt ↑ ⇒ It+1 ↑ ⇒ Dt+1 ↑
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Optimality condition:

vt (St , It ,Dt ) = max
Lt

(1− Dt )u(yt ) + δvt+1(St+1, It+1,Dt+1),

⇒

u′(yt ) = δ

(
∂vt+1

∂It+1
− ∂vt+1

∂St+1
+ πd

∂vt+1

∂Dt+1

)
∂It+1

∂Lt

where

∂vt+1

∂It+1
< 0, infectious ↑ ⇒ future infections/deaths ↑

− ∂vt+1

∂St+1
> 0, susceptible ↓ ⇒ future infections ↓

πd
∂vt+1

∂Dt+1
< 0, disutility from deaths.
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Motivations for Regression Analysis

• Case Growth Regression:

It+1 − It
It

= −γ + βt (Mt ),

⇒ ∆ log Cit = α′Mi,t−14 + µ′Infi,t−14 + δ′Y Xit + εy
it

• Job Loss Regression:

1− Lt = 1− ϕ−1(Mt ).

⇒ ln
( Yi,j2020

Yi,j,2019

)
= β1Mi,j + β2Mi,j ×Teli + γTeli + X ′i α+ εij
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Short-run trade off between job loss and infection in July
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“Mid-run” trade off: July-September
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Discussion

• Short-run trade-off in July in Tokyo:

• The short-run trade-off is

→ saving 1 job loss requires 7 more cases.

• What if Tokyo is like Aichi?

→ saving 1 job loss requires 1 more case.

• Mid-run trade-off in July-Sept:

→ saving 1 job loss requires 25 more cases.

• Keeping low job losses for a longer period requires a larger
number of cumulative cases because of “exponential
growth”.
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Conclusion

• “Lockdown” policies⇒ Mobility ↓.

• Mobility ↓ ⇒ Involuntary Job Loss ↑ and Case Growth ↓.

• High teleworkability weakens these relationships.

(e.g., Tokyo suffers less from the state of emergency).

• Quantifying short-run vs. long-run trade-off between
infections and job losses.

37



Limitations and caveats

• Limited economic outcomes.

• Limited health outcomes.

• Google mobility measures are useful but limited.

• Trade-offs are different across different individuals.

• Job loss risk depends on regular vs. non-regular,
occupations/industries.

• Health risk depends on young vs. old, underlying medical
conditions.

⇒ Negative externality under heterogenous risks.
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